
NAG Fortran Library Chapter Introduction

P01 – Error Trapping

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Errors, Failure and Warning Conditions . 2

2.2 The IFAIL Parameter . 2

2.3 Hard Fail Option . 2

2.4 Soft Fail Option . 3

2.5 Historical Note . 3

3 Recommendations on Choice and Use of Available Routines 4

4 Routines Withdrawn or Scheduled for Withdrawal 4

P01 – Error Trapping Introduction – P01

[NP3546/20A] P01.1

1 Scope of the Chapter

This chapter is concerned with the trapping of error, failure or warning conditions by NAG Library
routines. This introduction document describes the commonly occurring parameter IFAIL.

2 Background to the Problems

2.1 Errors, Failure and Warning Conditions

The error, failure or warning conditions considered here are those that can be detected by explicit coding in
a Library routine. Such conditions must be anticipated by the author of the routine. They should not be
confused with run-time errors detected by the compiling system, e.g., detection of overflow or failure to
assign an initial value to a variable.

In the rest of this document we use the word ‘error’ to cover all types of error, failure or warning
conditions detected by the routine. They fall roughly into three classes.

(i) On entry to the routine the value of a parameter is out of range. This means that it is not useful, or
perhaps even meaningful, to begin computation.

(ii) During computation the routine decides that it cannot yield the desired results, and indicates a failure
condition. For example, a matrix inversion routine will indicate a failure condition if it considers that
the matrix is singular and so cannot be inverted.

(iii) Although the routine completes the computation and returns results, it cannot guarantee that the results
are completely reliable; it therefore returns a warning. For example, an optimization routine may
return a warning if it cannot guarantee that it has found a local minimum.

All three classes of errors are handled in the same way by the Library.

Each error which can be detected by a Library routine is associated with a number. These numbers, with
explanations of the errors, are listed in Section 6 (Error Indicators and Warnings) in the routine document.
Unless the document specifically states to the contrary, the user should not assume that the routine
necessarily tests for the occurrence of the errors in their order of error number, i.e., the detection of an
error does not imply that other errors have or have not been detected.

2.2 The IFAIL Parameter

Most of the NAG Library routines which can be called directly by the user have a parameter called IFAIL.
This parameter is concerned with the NAG Library error trapping mechanism (and, for some routines, with
controlling the output of error messages and advisory messages).

IFAIL has two purposes:

(i) to allow the user to specify what action the Library routine should take if an error is detected;

(ii) to inform the user of the outcome of the call of the routine.

For purpose (i), the user must assign a value to IFAIL before the call to the Library routine. Since IFAIL
is reset by the routine for purpose (ii), the parameter must be the name of a variable, not a literal or
constant.

The value assigned to IFAIL before entry should be either 0 (hard fail option), or 1 or – 1 (soft fail
option). If after completing its computation the routine has not detected an error, IFAIL is reset to 0 to
indicate a successful call. Control returns to the calling program in the normal way. If the routine does
detect an error, its action depends on whether the hard or soft fail option was chosen.

2.3 Hard Fail Option

If the user sets IFAIL to 0 before calling the Library routine, execution of the program will terminate if the
routine detects an error. Before the program is stopped, this error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n

** NAG hard failure - execution terminated

Introduction – P01 NAG Fortran Library Manual

P01.2 [NP3546/20A]

where XXXXXX is the routine name, and n is the number associated with the detected error. An explanation
of error number n is given in Section 6 of the routine document XXXXXX.

In addition, most routines output explanatory error messages immediately before the standard termination
message shown above.

In some implementations of the NAG Library, when the hard fail option is invoked, the error message may
be accompanied by dump or tracing information. The output channel used for the output of the error
message is determined by X04AAF.

The hard fail option should be selected if the user is in any doubt about continuing the execution of the
program after an unsuccessful call to a NAG Library routine. For environments where it might be
inappropriate to halt program execution when an error is detected it is recommended that the hard fail
option is not used.

2.4 Soft Fail Option

To select this option, the user must set IFAIL to 1 or �1 before calling the Library routine.

If the routine detects an error, IFAIL is reset to the associated error number; further computation within the
routine is suspended and control returns to the calling program.

If the user sets IFAIL to 1, then no error message is output (silent exit). If the output of error messages is
undesirable, then silent exit is recommended.

If the user sets IFAIL to �1 (noisy exit), then before control is returned to the calling program, the
following error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: IFAIL = n

** NAG soft failure - control returned

In addition, most routines output explanatory error messages immediately before the above standard
message.

It is most important to test the value of IFAIL on exit if the soft fail option is selected. A non-zero exit
value of IFAIL implies that the call was not successful so it is imperative that the user’s program be coded
to take appropriate action. That action may simply be to print IFAIL with an explanatory caption and then
terminate the program. Many of the example programs in Section 9 of the routine documents have IFAIL-
exit tests of this form. In the more ambitious case, where the user wishes his or her program to continue,
it is essential that the program can branch to a point at which it is sensible to resume computation.

The soft fail option puts the onus on the user to handle any errors detected by the Library routine. With
the proviso that the user is able to implement it properly, it is clearly more flexible than the hard fail
option since it allows computation to continue in the case of errors. In particular there are at least two
cases where its flexibility is useful:

(i) where additional information about the error or the progress of computation is returned via some of
the other parameters;

(ii) exceptionally, certain routine documents may advise further calls with IFAIL left with its value on exit
after the first call of the routine. In such cases the user should not reset the IFAIL-exit value between
calls;

(iii) in some routines, ‘partial’ success can be achieved, e.g., a probable solution found but not all
conditions fully satisfied, so the routine returns a warning. On the basis of the advice in Section 6 and
elsewhere in the routine document, the user may decide that this partially successful call is adequate
for certain purposes.

2.5 Historical Note

The error handling mechanism described above was introduced into the NAG Library at Mark 12. It
supersedes the earlier mechanism which for most routines allowed IFAIL to be set by the user to 0 or 1
only. The new mechanism is compatible with the old except that the details of the messages output on
hard failure have changed. The new mechanism also allows the user to set IFAIL to �1 (soft failure, noisy
exit).

P01 – Error Trapping Introduction – P01

[NP3546/20A] P01.3

A few routines (introduced mainly at Marks 7 and 8) use IFAIL in a different way to control the output of
error messages, and also of advisory messages (see Chapter X04). In those routines IFAIL is regarded as a
decimal integer whose least significant digits are denoted ba with the following significance:

a = 0: hard failure a = 1: soft failure
b = 0: silent exit b = 1: noisy exit

Details are given in the documents of the relevant routines; for those routines this alternative use of IFAIL
remains valid.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

To implement the error mechanism described in Section 2, NAG Library routines call P01ABF.

This routine is therefore primarily of interest only to writers of NAG Fortran Library software. It is
included in the general user manual for completeness. Users need not know how to call P01ABF directly
though they may be aware of its existence.

4 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

P01AAF 13 P01ABF

Introduction – P01 NAG Fortran Library Manual

P01.4 (last) [NP3546/20A]

	P01
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Errors, Failure and Warning Conditions
	2.2 The IFAIL Parameter
	2.3 Hard Fail Option
	2.4 Soft Fail Option
	2.5 Historical Note

	3 Recommendations on Choice and Use of Available Routines
	4 Routines Withdrawn or Scheduled for Withdrawal

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

